
# 大気圧プラズマを利用する 新規CO<sub>2</sub>分解・還元プロセスの研究開発

2025年 1月28日(火) 国立大学法人東海国立大学機構 岐阜大学 副学長/教授 神原 信志 kambara.shinji.g3@f.gifu-u.ac.jp カーボンリサイクル・次世代火力発電等技術開発/CO<sub>2</sub>有効利用拠点における技術開発/ 大気圧プラズマを利用する新規CO<sub>2</sub>分解・還元プロセスの研究開発 **NEDO** 

New Energy and Industrial Technology Development Organization

### 研究開発内容

- <概 要> CO。分解、炭酸塩生成、尿素生成反応器で構成するCO。分解・還元プロセスの開発
- 〈事業期間〉2022年4月~2025年3月
- 〈委託先〉 国立大学法人東海国立大学機構 岐阜大学・川田工業株式会社



#### <実施内容>

本研究では、3つの反応器から成る新規 $CO_2$ 分解・還元プロセスを開発する。

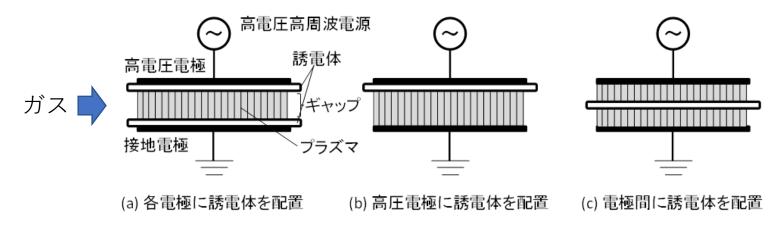
- 技術課題① CO<sub>2</sub>プラズマ分解リアクターの開発(高効率化およびスケールアップ)
- 技術課題②  $CO_2$ 転換・ $O_2$ 分離リアクターの開発(反応最適化およびスケールアップ)
- 技術課題③ CO転換リアクターの開発(高効率化と最適装置開発およびスケールアップ)

# 1. プラズマでCO<sub>2</sub>を分解する

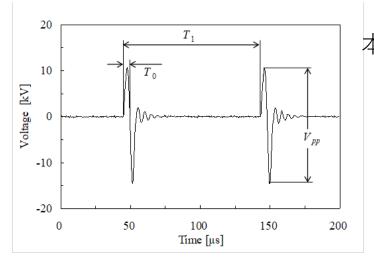
# 研究のアイデア

CO₂を分解して、COにする。

COは様々な化学物質の原料となる。 (C<sub>1</sub>ケミストリー)

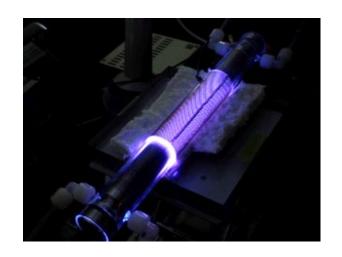

$$CO_2 \rightleftarrows CO + (1/2)O_2$$

どうやって、CO<sub>2</sub>を分解する?

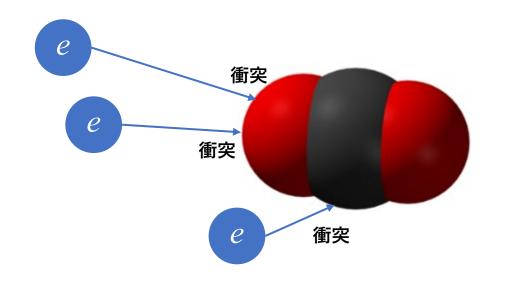



# 2. 大気圧プラズマの基礎知識

### ■誘電体バリア放電(Dielectric Barrier Discharge: DBD)無声放電ともいう




#### ■高電圧パルス電源




本研究では, $T_1$  =100  $\mu$ s (10 kHz) 印加電圧  $V_{pp}$  = 12  $\sim$ 25 kV

### (3) 大気圧プラズマの外観



### ■大気圧プラズマ内での化学反応の特徴



大気圧プラズマで発生した**電子エネルギーe**が、分子に次々と衝突する現象が起こる。

#### 一般に,

(1個の電子エネルギー) << (分子の電離エネルギー) であるが、電子が衝突すると、分子は励起される(分子の内部エネルギーは基底状態よりも高くなる)。 励起された分子に、次々と電子エネルギーが衝突すると、電子エネルギーの累積により、分子の電離エネルギーを超え、ついには分子は電離(分解)する。これを化学式で書くと、

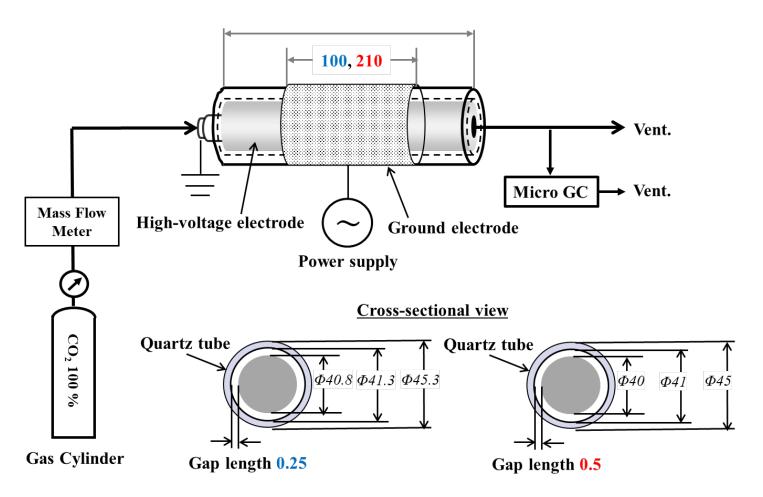
$$e + CO_2 \rightarrow CO_2^* + e$$
  
 $e + CO_2^* \rightarrow CO + O + e$ 

 $CO_2$ \*は,励起した $CO_2$ 分子。

すなわち、**大気圧プラズマでは、温度や圧力をかけることなく、分子を電離**(分解)したり、活性種(ラジカル)を 生成したり、化学反応を起こすことができる特徴がある。

# 3. 大気圧プラズマによるCO2の分解実験

様々な長さとギャップ長の大気圧プラズマリアクターを製作した。流量と印加電圧を変えて実験(ガス滞留時間、入力エネルギーが変化)。





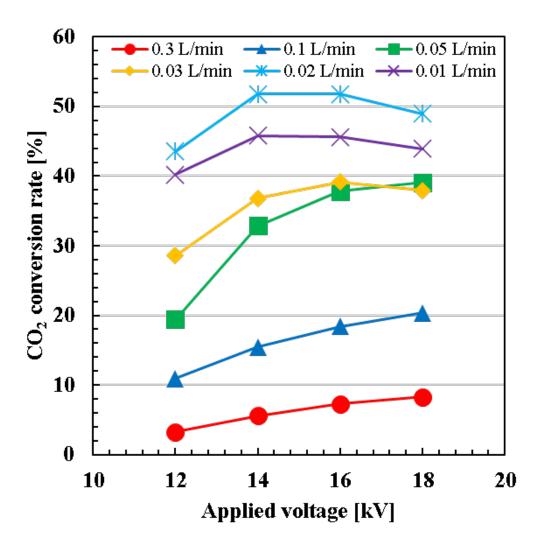


図2 CO<sub>2</sub>プラズマ分解実験装置

表1 CO<sub>2</sub>プラズマ分解実験条件

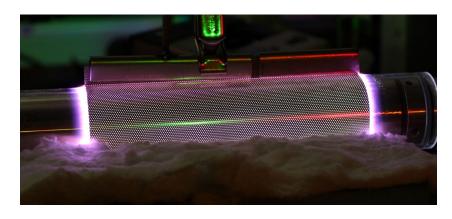

| Supply gas      | [—]     | $CO_2$     |  |
|-----------------|---------|------------|--|
| Gas flow rate   | [L/min] | 0.01 - 1.0 |  |
| Gap length      | [mm]    | 0.5, 0.25  |  |
| Repetition rate | [kHz]   | 10         |  |
| Applied voltage | [kV]    | 12—18      |  |

図1 CO<sub>2</sub>プラズマ分解実験装置

### ■印加電圧の影響



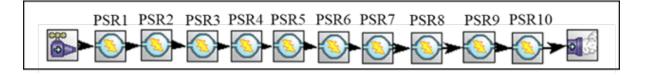
- •CO<sub>2</sub>供給流量 0.02 L/min, 印加電圧14 kVのとき、 最大転換率51.8 %を達成(世界最高レベル)
- ・印加電圧が高いところで、転換率が減少するケースがある。



CO<sub>2</sub>大気圧プラズマの様子

# ■類似研究との比較

|                                 | Maximum CO <sub>2</sub> conversion |                            | Maximum energy efficiency |        |                            |                      |                      |
|---------------------------------|------------------------------------|----------------------------|---------------------------|--------|----------------------------|----------------------|----------------------|
| Reactor<br>type                 | SEI                                | CO <sub>2</sub> conversion | Energy<br>efficiency      | SEI    | CO <sub>2</sub> conversion | Energy<br>efficiency | Ref.                 |
|                                 | [kJ/L]                             | [%]                        | [%]                       | [kJ/L] | [%]                        | [%]                  |                      |
| DBD                             | 154.74                             | 51.42                      | 4.15                      | 25.26  | 19.08                      | 9.43                 | this study           |
| DBD                             | 120                                | 27.2                       | 2.8                       | 24     | 20.0                       | 10.4                 | mei2017              |
| DBD                             | 229                                | 35                         | 2                         | 25     | 3.1                        | 8                    | aert2015             |
| DBD                             | 60                                 | 18                         | 1.7                       | 20.6   | 9.6                        | 3.8                  | duan2015             |
| DBD                             | 602.01                             | 53.70                      | 1.11                      | 156.25 | 33.30                      | 2.66                 | uytdenhou<br>wen2018 |
| ZrO2<br>Packed-<br>bed DBD      | 240                                | 42                         | 4.7                       | 36     | 10                         | 9.6                  | vanlaer201<br>5      |
| ZrO2-CeO2<br>Packed-<br>bed DBD | 330                                | 64.38                      | 2.44                      | 18     | 12.62                      | 8.76                 | li2020               |


## <u>成 果</u>

- ・100%CO<sub>2</sub>を、51.4%分解できた。
- ・1.2 LのCO<sub>2</sub> (2.4g) を, 52 W\*で分解できた。

\*蛍光灯(FPL55EXN, 長さ56cm)の消費電力

# 4. プラズマ素反応シミュレーション

### ●プラズマリアクターのネットワークモデルを作成 (ANSYS Chemkin)



### ●文献により素反応と速度パラメータを調査

Modified Arrhenius equation

*k*: Reaction rate constant

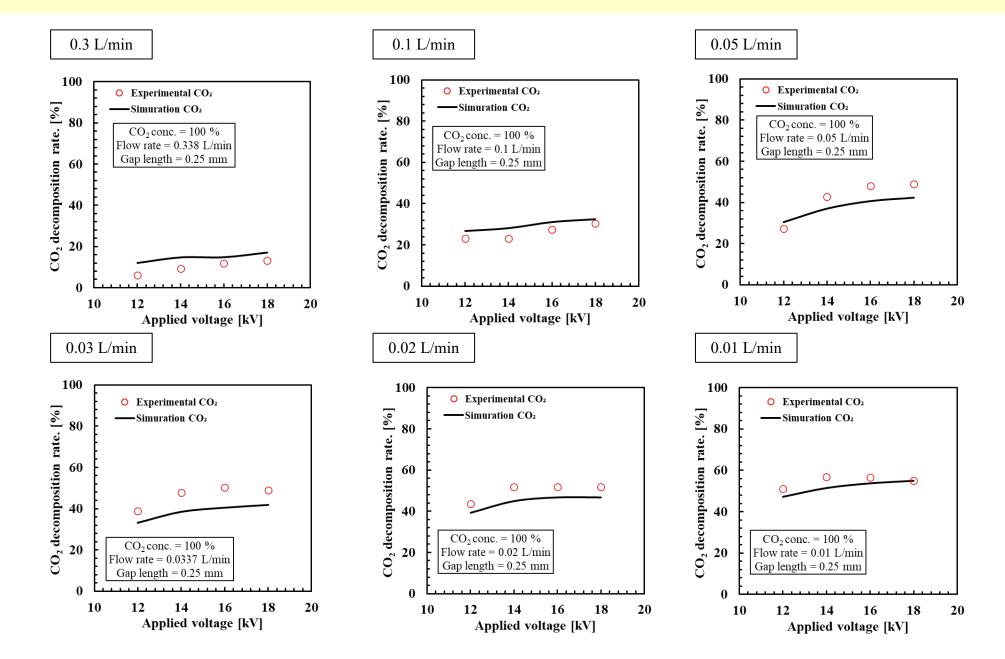
A: Pre-exponential factor

 $\beta$ : Temperature exponent[kg\*kg-1\*s-1]

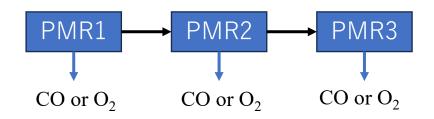
*E*: Activation energy[J•mol⁻¹]

R: Gas constant [J•mol-1•K-1]

 $T_e$ : Electron temperature [K]


k<sub>B</sub>: Boltzmann's constant[J/K]

| $b - A T^{\beta}$ orn (               | $\left( -\frac{E}{E} \right)$ | þ  |
|---------------------------------------|-------------------------------|----|
| $k = A T_e^{\beta} exp \left(\right.$ | $\langle k_B T_o \rangle$     | I. |
|                                       | ·                             | Γ  |
|                                       |                               | 7  |
|                                       |                               | 1, |


|    | 支配的な反応                                   | A       | β    | E    |
|----|------------------------------------------|---------|------|------|
| R1 | $e + CO_2 \rightarrow e + CO + O$        | 5.0E+1  | 2.75 | 1000 |
| R2 | $CO + O (+M) \rightleftarrows CO_2 (+M)$ | 1.8E+10 | 0.0  | 2380 |

|     | 化学反応式                     | 频度因子                   | 温度指数  | 活性化エネルギー     |           |
|-----|---------------------------|------------------------|-------|--------------|-----------|
| No. |                           | A [cm <sup>3</sup> /s] | b [-] | E, [cal/mol] | 補足        |
| 1   | E + CO2 => E + CO + O     | 5.00E+00               | 2.5   | 0.0          |           |
| 2   | CO2 + CO2 => CO + O + CO2 | 4.39E-07               | 0.0   | 128.6        |           |
| 3   | CO2 + CO => CO + O + CO   | 4.39E-07               | 0.0   | 128.6        |           |
| 4   | CO2 + O2 => CO + O + O2   | 3.72E-10               | 0.0   | 119.6        |           |
| 5   | CO + O + CO2 => CO2 + CO2 | 6.54E-36               | 0.0   | 4.3          |           |
| 6   | CO + O + CO2 => CO2 + CO2 | 6.54E-36               | 0.0   | -3.7         | DUPRICATE |
| 7   | CO + O + CO => CO2 + CO   | 6.54E-36               | 0.0   | 4.3          |           |
| 8   | 0 + CO2 => CO + O2        | 7.77E-12               | 0.0   | 33.0         | 順反応       |
| 9   | CO + O2 => CO2 + O        | 1.23E-12               | 0.0   | 25.2         | 逆反応       |
| 10  | 02 + 02 => 0 + 0 + 02     | 8.14E-09               | 0.0   | 118.6        |           |
| 11  | 02 + 0 => 0 + 0 + 0       | 2.00E-08               | 0.0   | 114.9        |           |
| 12  | 02 + C0 => 0 + 0 + C0     | 2.40E-09               | 0.0   | 118.0        |           |
| 13  | 02 + C02 => 0 + 0 + C02   | 2.57E-09               | 0.0   | 111.5        |           |
| 14  | 0 + 0 + 02 => 02 + 02     | 6.80E-34               | 0.0   | 0.0          |           |
|     | 0 + 0 + 0 => 02 + 0       | 2.19E-33               | 0.0   | -4.5         |           |
|     | 0 + 0 + C0 => 02 + C0     | 2.75E-34               | 0.0   | 0.0          |           |
|     | 0 + 0 + C02 => 02 + C02   | 2.75E-34               | 0.0   | 0.0          |           |
|     | CO2 + C = CO + CO         | 6.00E+08               | 0.0   | 0.0          |           |
|     | C2 + O2 = CO + CO         | 5.00E+13               | 0.0   | 0.0          |           |
|     | O+O+M=O2+M                | 2.90E+17               | -1.0  |              | 低圧極限      |
|     | E + O2 => O2 + E          | 1.41E-04               |       | 11594.0      |           |
|     | E + O2 => O + O* + E      | 4.52E-13               | 0.9   | 51069.0      |           |
|     | E + O2 => O2+ + 2E        | 3.99E-14               | 1.1   | 137580.0     |           |
|     | E + O2 => O + O-          | 3.60E-08               | -0.5  | 57440.0      |           |
|     | E + 0 => 0* + E           | 4.30E-07               | -0.3  | 38431.0      |           |
|     | E + 0 => 0 + E            | 1.24E-09               | 0.0   | 60440.0      |           |
|     | E + O => O+ + 2E          | 1.95E-11               | 0.6   | 165410.0     |           |
|     | E + O* => O+ + 2E         | 1.95E-11               | 0.6   | 140000.0     |           |
|     | E + O- => O + 2E          | 2.10E-10               | 0.5   | 39434.0      |           |
|     | E + E + O => O- + E       | 1.00E-30               | 0.0   | 0.0          |           |
|     | 0 - + 02 + = 0 + 02       | 2.80E-07               | 0.0   | 0.0          |           |
|     | 0-+0+=20                  | 2.80E-07               | 0.0   | 0.0          |           |
|     | 0-+0=>02+E                | 1.40E-10               | 0.0   | 0.0          |           |
|     | 0++02=02++0               | 2.10E-11               | 0.0   | 0.0          |           |
|     | 0* + 02 = 0 + 02          | 3.20E-11               | 0.0   | -67.0        |           |
|     | 0* + 0 = 0 + 0            | 4.00E-11               | 0.0   | 0.0          |           |
|     | 02+ + 02- => 202          | 4.38E+18               | -0.5  |              | 高圧極限      |
|     | 02+ + 02- + M => 202 + M  | 1.70E+29               |       |              | 高圧極限      |
|     | 0++02-=>0+02              | 4.17E+18               | -0.5  |              | 高圧極限      |
| 40  | 0++02-+M=>0+02+M          | 1.70E+29               | -2.5  | 0.0          | 高圧極限      |

# (1)CO2分解率シミュレーション結果



# (2)CO<sub>2</sub>分解率を向上するためのケーススタディ



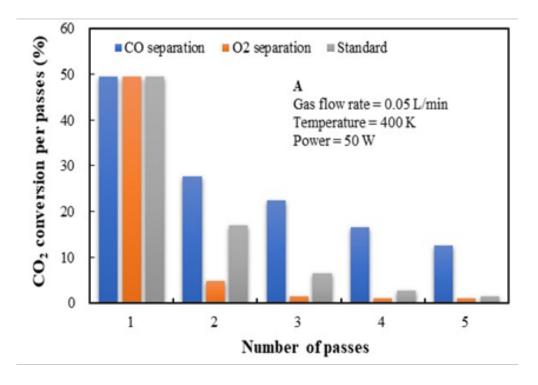



図 CO/O<sub>2</sub>分離膜を用いたCO<sub>2</sub>分解率の変化 (シミュレーション)

### CO<sub>2</sub>再生成には、O<sub>2</sub>ではなく、COが関与

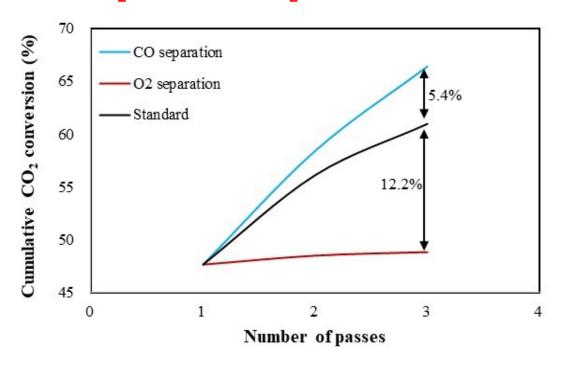



図 CO/O<sub>2</sub>分離膜を用いたCO<sub>2</sub>分解率の変化 (シミュレーション)